Aquaculture Nutrition

The suitable dietary protein and lipid levels for juvenile hybrid sunfish (Lepomis cyanellus ♀× Lepomis macrochirus ♂)

Journal:	Aquaculture Nutrition
Manuscript ID	ANU-20-471
Manuscript Type:	Original Article
Date Submitted by the Author:	29-Sep-2020
Complete List of Authors:	Ma, Hengjia; Hangzhou Academy of Agricultural Sciences, Hangzhou Academy of Agricultural Sciences Liu, Kai Feng, Xiaoyu Huang, Hui Wu, Yubo; Zhejiang University, College of Animal Sicences Xie, Nan
Keywords:	Fish < Fish < Aquatic Animals, Tank < Farming, Feed Utilisation < Feed, Protein < Nutrients < Feed, Growth < Metabolism, Requirement < Metabolism

3 4	1	The suitable dietary protein and lipid levels for juvenile hybrid sunfish (Lepomis
5 6 7	2	cyanellus $\stackrel{\frown}{}\times$ Lepomis macrochirus $\stackrel{\frown}{}$)
7 8 9	3	
10 11	4	Hengjia Ma ¹ , Kai Liu ¹ , Xiaoyu Feng ¹ , Hui Huang ¹ , Yubo Wu ² & Nan Xie ¹
12 13 14	5	
14 15 16	6	¹ Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, Zhejiang, China;
17 18 19	7	² College of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang, China;
20 21	8	
22 23 24	9	
25 26	10	*Correspondence: Y. Wu, Taizhou University, Taizhou 318000, Zhejiang, China.
27 28 29	11	E-mail: yubowu@126.com; Nan Xie, Hangzhou Academy of Agricultural Sciences,
30 31 32	12	Hangzhou 310024, Zhejiang, China. E-mail: n.xie@163.com
33 34	13	
35 36	14	
37 38 30	15	
39 40 41	16	
42 43	17	
44 45	18	
46 47 48	19	
49 50 51 52 53 54 55 56 57 58	20	Running head: Dietary protein and lipid requirements for hybrid sunfish

22 Abstract

An eight-week feeding trial was conducted to examine the suitable dietary protein and lipid levels for juvenile hybrid sunfish (*Lepomis cyanellus* $\mathcal{Q} \times Lepomis$ macrochirus \mathcal{O}). A 5×2 factorial layout containing five protein levels (300, 340, 380, 420 and 460 g kg⁻¹) and two lipid levels (30 and 80 g kg⁻¹) were designed. Fish (initial body weight $1.21 \pm$ 0.06 g) were fed the test diets twice daily. The final body weight (FBW) and percent weight gain (PWG) in fish increased with dietary protein level from 300 to 420 g kg⁻¹, and afterward decreased with dietary protein level from 420 to 460 g kg⁻¹. Feed intake and feed conversion ratio (FCR) significantly declined with increase dietary protein level. Fish fed at 380 and 420 g kg⁻¹ dietary protein level exhibited highest nitrogen retention efficiency (NRE) and phosphorus retention efficiency (PRE), however, the lowest nitrogen waste and phosphorus waste. For different dietary lipid levels, the higher FBW, PWG, NRE and PRE, but the lower feed intake, FCR, nitrogen and phosphorus waste, were found in fish fed diet fish fed at 80 g kg⁻¹ dietary lipid level than those in fish fed at 30 g kg⁻¹ dietary lipid level. At the end of feeding trail, the contents of body moisture and lipid significantly influenced by dietary lipid level. According to these results, a diet containing 420 g kg⁻¹ protein and 80 g kg⁻¹ lipid is recommended for efficient growth of juvenile hybrid sunfish. **KEY WORDS:** dietary lipid level, dietary protein level, hybrid sunfish, growth, feed

41 utilization, waste output

1 INTRODUCTION

Protein and lipid in feed are essential nutrients for the normal growth and metabolism of fish. Dietary proteins provide amino acids for protein synthesis in fish (Glencross, Smith, Curnow, Smith, & Williams, 2001), and dietary lipids act as a source of energy fuel and essential fatty acids (Alam, Watanabe, Carroll, & Rezek, 2009). The ratio of protein to energy is one of the most important factors affecting feed utilization efficiency in fish (Rahimnejad, Bang, Park, Sade, Choi, & Lee, 2015), and protein-sparing action by elevating dietary lipid level has been reported in some fish species such as common dentex Dentex dentex (Skalli, Hidalgo, Abellán, Arizcun, & Cardenete, 2004), blunt snout bream Megalobrama amblycephala (Li, Liu, Jiang, Zhu, & Ge, 2010) and largemouth bass Micropterus salmoides (Huang, Wu, Lin, Chen, Karrow, Ren, & Wang, 2017). Generally, feeding at optimal dietary protein and lipid levels makes fish grow fast. Superfluous dietary protein increases feed cost and nitrogen waste output (Huang et al., 2017), and excess dietary lipid causes undesirable symptoms in fish such as fatty liver and poor fillet quality (Chatzifotis, Panagiotidou, Papaioannou, Pavlidis, Nengas, & Mylonas, 2010). Therefore, determination of dietary requirements for protein and lipid in fish helps in formulating cost-effective feed with high quality (Huang et al., 2017). Hybrid sunfish is a freshwater omnivore fish species that generated by hybridization of female green sunfish Lepomis cyanellus and male bluegill Lepomis macrochirus (Twibell, Wilson, Sanders, & Brown, 2003). Hybrid sunfish possesses some desirable characteristics like high flesh quality and good flavor, acceptance of prepared diets (Lane & Morris, 2002), and capacity for rapid growth under a wide range of water

65 temperature (Wang, Hayward, & Noltie, 2000), which make it as a good candidate for

66 commercial rearing. Although some studies tried to evaluate the experimental and

67 practice diets (Twibell et al., 2003) and effects of dietary protein levels on growth, feed 68 conversion and nitrogen utilization of juvenile hybrid sunfish (Tidwell, Webster, & 69 Clark, 1992), the optimum dietary protein and lipid levels for this species is still 70 unknown. In the present study, we examined the effects of different dietary protein and 71 lipid levels on feed intake, growth, feed utilization, body components and wastes output 72 of hybrid sunfish. Our objective was to determine the suitable dietary protein and lipid 73 levels for hybrid sunfish farming.

2 MATERIALS AND METHODS

76 2.1 Feed ingredients and experimental diets

Red fish meal (steam dried, manufactured in New Zealand), poultry by-product meal
(pet-feed grade, manufactured in the USA), menhaden fish oil (manufactured in the
USA), soybean meal, rapeseed meal, wheat flour, wheat bran and wheat gluten meal
were supplied by Kesheng Feed Company (Shaoxing, China). All the feed ingredients
were ground to pass through a 0.425 mm mesh before assay, and the proximate
composition of the feed ingredients is presented in Table 1.

Table 1

A 5×2 factorial layout containing five protein levels (300, 340, 380, 420 and 460 g kg⁻¹) and two lipid levels (30 and 80 g kg⁻¹) were designed, which correspondingly generated ten test diets. The diets contained low lipid level (30 g kg⁻¹) and gradient protein levels (300, 340, 380, 420 and 460 g kg⁻¹) were abbreviated as L30, L34, L38, L42 and L46, respectively, and the other five diets contained high lipid level (80 g kg⁻¹) and gradient lipid levels were abbreviated as H30, H34, H38, H42 and H46, respectively. Red fish meal and soybean meal were used as the major protein source, and menhaden fish oil was used as the major lipid source.

Aquaculture Nutrition

The feed ingredients were weighed in accordance with the designed feed formula and mixed by hand gradually. After being mixed, blend of feed ingredients were further mixed with quantitative water (4:1 w/v) for 15 min. Pellets (0.5mm in diameter, 1.0 mm in length) were extruded using a single screw laboratory-scale extruder. The test diets were dried at 25 °C in an air-conditioned room, and were grinded into smaller pellets, and then stored in plastic bags at -20 °C until use. Formulation, proximate composition and gross energy of the test diets are presented in Table 2.

Table 2

2.2 Fish and feeding trial

The feeding trial was conducted in Hangzhou Academy of Agricultural Sciences
(Hangzhou, China). Healthy hybrid sunfish juveniles hatched by Hangzhou Academy of
Agricultural Sciences were acclimated in two tanks (3 m in diameter, 1.5 m in height)
for two month. During the acclimation, the fish were fed with a commercial feed twice
daily.

Prior to the feeding trial, the acclimatized fish were deprived of feed for 24 h, thirty groups each of 30 fish were group-weighed and randomly distributed into 30 fiberglass tanks (100 L), with each test diet three replicates. The initial body weight of fish is 1.21 ± 0.06 g (mean \pm SD, n = 30). Three groups each of 50 fish were sampled for the analysis of initial body composition, and the sampled fish were stored at -20 °C until analysis.

The feeding trial lasted eight weeks, during which fish were fed to apparent satiation with the test diets at 08:30 h and 16:30 h daily. Water in the experimental tanks was continually aerated and recirculated at 1.5 L/min, and 30% of water was renewed by aerated tap water every day. Water temperature was measured daily and averaged 28.5 ± 1.2 °C. Dissolved oxygen was measured weekly, and always greater than 6.5 mg/L.

The concentration of NH₃-N in the experimental tank was undetectable. At the end of the feeding trial, deprived of feed for 24 h, the fish were captured from each tank and bulk weighed. All of the fish from each tank were sampled for analysis of final body composition. After measurement of body weight, body length and liver weight, the sampled fish were stored at -20 °C for chemical analysis. 2.3 Chemical analysis Prior to chemical analysis, the sampled fish were thawed, weighed, autoclaved at 121 °C for 20 min, homogenized and dried at 105 °C. The contents of moisture, crude protein, crude lipid, ash and phosphorus of the feed ingredients, test diets and fish were analyzed following the methods described in AOAC (1995). **2.4 Calculations and statistics** Feed intake, percent weight gain (PWG), feed conversion ratio (FCR), retention efficiencies of nitrogen (NRE) and phosphorus (PRE), condition factor, hepatosomatic index, nitrogen waste and phosphorus waste are calculated as below: Feed intake (%/day) = $100 \times I / [(W_0 + W_t) / 2 \times t]$ PWG (%) = $100 \times (W_t / N_t - W_0 / N_0) / (W_0 / N_0)$ $FCR = I / (W_t - W_0 + W_d)$ NRE (%) = $100 \times (W_t / N_t \times C_{Nt} - W_0 / N_0 \times C_{N0}) / [2 \times I / (N_t + N_0) \times C_{Nf}]$ PRE (%) = $100 \times (W_t / N_t \times C_{Pt} - W_0 / N_0 \times C_{P0}) / [2 \times I / (N_t + N_0) \times C_{Pf}]$ Condition factor $(g/cm^3) = 100 \times W_s / L_s^3$ Hepatosomatic index (%) = $100 \times W_1 / W_s$ Nitrogen waste [g N/ (kg fish gain)] = $1000 \times (I \times C_{Nf}) \times (1 - NRE) / (W_t - W_0)$ Phosphorus waste [g P/ (kg fish gain)] = $1000 \times (I \times C_{Pf}) \times (1 - PRE) / (W_t - W_0)$ where I (g) is total amount of the dry feed; W_0 (g) is total initial body weight and W_t (g) is total final body weight; W_d (g) is total body weight of dead fish; t (d) is the duration

Aquaculture Nutrition

of the trial; N_t is number of fish at the end of the trial and N_0 is at the start; C_{Nt} (%) is nitrogen content of fish body at the end of the trial and C_{N0} (%) is at the start; C_{Nf} (%) is nitrogen content of test diets; C_{Pt} (%) is phosphorus content of fish body at the end of the trial and C_{P0} (%) is at the start; C_{Pf} (%) is phosphorus content of test diets; W_s (g), L_s (cm) and W_1 (g) are body weight, total length and liver weight of the sampled fish, respectively.

The manipulation effects of protein level, lipid level and their interaction on final body weight, PWG, feed intake, FCR, NRE, PRE, condition factor, hepatosomatic index, whole body components (moisture, crude protein, crude lipid, ash and phosphorus), wastes of nitrogen and phosphorus of fish fed the test diets were tested by two-way ANOVA. Duncan's test was used to examine the differences in the above parameters between different dietary protein levels or between different dietary lipid levels if the interaction effect was not significant. To determine the diet with best production performance, one-way ANOVA and Duncan's test was conducted to examine the differences in above parameters among all the test diets. The significant level was set at P < 0.05. All the statistical analyses were performed with IBM SPSS.

3 RESULTS

3.1 Survival, growth, feed intake and feed utilization efficiency

Survival rate ranged from 95% to 100% in the feeding trial. The FBW, PWG and feed intake were affected by dietary protein level and lipid level, while FCR, NRE and PRE were affected by dietary protein level, lipid level and their interaction (two-way ANOVA, P < 0.05, Table 3). The FBW and PWG in fish increased with dietary protein level increased from 300 to 420 g kg⁻¹, and significantly higher FBW and PWG were found in fish fed at 80 g kg⁻¹ dietary lipid level than in fish fed at 30 g kg⁻¹ dietary lipid

167	level (Duncan's test, $P < 0.05$). The relationship between PWG and dietary crude
168	protein level (PL) was described as PWG = $-2.2425 \times (PL)^2 + 192.36 \times PL - 3115.3$ (P
169	$<$ 0.05, r² = 0.8272) at 30 g kg¹ dietary lipid level (Figure 1a), and PWG = $-3.765 \times$
170	$(PL)^2 + 315.64 \times PL - 5302.4$ (<i>P</i> < 0.05, r ² = 0.8141) at 80 g kg ⁻¹ dietary lipid level
171	(Figure 1b). Feed intake and FCR declined with dietary protein level increased from
172	300 to 420 g kg ⁻¹ (Duncan's test, $P < 0.05$), and significantly lower feed intake and FCR
173	were found in fish fed at 80 g kg^{-1} dietary lipid level than in fish fed at 30 g kg^{-1} dietary
174	lipid level (Duncan's test, $P < 0.05$). The highest NRE were found in fish fed at 380 and
175	420 g kg ⁻¹ dietary protein levels (Duncan's test, $P < 0.05$), while the highest PRE were
176	found in fish fed at 380 g kg ⁻¹ dietary protein levels (Duncan's test, $P < 0.05$).
177	Significantly higher PRE and NRE were found in fish fed at 80 g kg ⁻¹ dietary lipid level
178	than in fish fed at 30 g kg ⁻¹ dietary lipid level (Duncan's test, $P < 0.05$).
179	Table 3 and Figure 1
180	The FCR were significantly lower in fish fed diets H38, H42 and H46 than in fish
181	fed other test diets (one-way ANOVA, $P < 0.05$). The NRE and PRE were significantly
182	higher in fish fed diets H38 and H42 than in fish fed other test diets (Duncan's test, $P <$
183	0.05)
184	3.2 Morphology and body composition
185	At the end of the feeding trial, condition factor was affected by dietary lipid level and
185 186	At the end of the feeding trial, condition factor was affected by dietary lipid level and the interaction between protein level and lipid level (two-way ANOVA, $P < 0.05$, Table
185 186 187	At the end of the feeding trial, condition factor was affected by dietary lipid level and the interaction between protein level and lipid level (two-way ANOVA, $P < 0.05$, Table 4). The hepatosomatic index and body protein content were affected by dietary protein
185 186 187 188	At the end of the feeding trial, condition factor was affected by dietary lipid level and the interaction between protein level and lipid level (two-way ANOVA, $P < 0.05$, Table 4). The hepatosomatic index and body protein content were affected by dietary protein level, while body moisture content was affected by dietary lipid level (two-way
185 186 187 188 189	At the end of the feeding trial, condition factor was affected by dietary lipid level and the interaction between protein level and lipid level (two-way ANOVA, $P < 0.05$, Table 4). The hepatosomatic index and body protein content were affected by dietary protein level, while body moisture content was affected by dietary lipid level (two-way ANOVA, $P < 0.05$). The body lipid content was affected by dietary protein level and
	 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

191 were unaffected by dietary protein level, lipid level and their interaction (two-way

Aquaculture Nutrition

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ ı วว
22
23
24
25
26
27
28
29
30
31
27
J∠ 22
22
34
35
36
37
38
39
40
41
42
43
44
45
45 46
40
4/
48
49
50
51
52
53
54
55
56
57
50
20
27
60

192	ANOVA, $P > 0.05$). No significant differences were found in condition factor, whole
193	body contents of moisture, ash and phosphorus among fish fed diets containing different
194	dietary protein levels, while no significant differences were found in hepatosomatic
195	index, whole body contents of protein, ash and phosphorus among fish fed diets
196	containing different dietary lipid levels (Duncan's test, $P > 0.05$). Hepatosomatic index
197	was significantly higher in fish fed at 300 g kg ⁻¹ dietary protein level than in fish fed at
198	other test protein levels (Duncan's test, $P < 0.05$). Whole body protein content was
199	significantly higher in fish fed at 460 g kg ⁻¹ dietary protein level than in fish fed at 300
200	g kg ⁻¹ dietary protein level (Duncan's test, $P < 0.05$), while no significant difference was
201	found in whole body protein content among fish fed at 340, 380 and 420 g kg ⁻¹ dietary
202	protein levels (Duncan's test, $P > 0.05$). Whole body lipid content was significantly
203	higher in fish fed at 300 g kg ⁻¹ dietary protein level than in fish fed at 420 and 460 g
204	kg ⁻¹ dietary protein level (Duncan's test, $P < 0.05$). Condition factor and whole body
205	lipid content was lower in fish fed at 3% dietary lipid level than in fish fed at 80 g kg ⁻¹
206	dietary lipid level, while whole body moisture content was higher in fish fed at 30 g kg^{-1}
207	dietary lipid level than in fish fed at 80 g kg ⁻¹ dietary lipid level (Duncan's test, $P <$
208	0.05).

209

Higher condition factor was found in fish fed diet H46 than in fish fed diets L38, H30 and H42 (one-way ANOVA, P < 0.05), while no significant difference was found in condition factor among fish fed diets L30, L34, L42, L46, H34 and H38 (Duncan's test, P > 0.05).

214 **3.3 Wastes output**

Table 4

The nitrogen waste and phosphorus waste were affected by dietary lipid level and protein level (two-way ANOVA, P < 0.05, Table 5). Nitrogen waste was lower in fish fed at 380 g kg⁻¹ dietary protein level than in fish fed at 300, 340 or 460 g kg⁻¹ dietary protein level, and phosphorus waste was lower in fish fed at 380, 420 and 460 g kg⁻¹ dietary protein level than in fish fed at 300 and 340 g kg⁻¹ dietary protein level (Duncan's test, P < 0.05). Higher nitrogen and phosphorus wastes were found in fish fed at 30 g kg⁻¹ dietary lipid level than in fish fed at 80 g kg⁻¹ dietary lipid level (Duncan's test, P < 0.05).

Table 5

225 4 DISCUSSIONS

Tidwell et al. (1992) investigated the effects three isocaloric (4.0-4.2 Kcal g⁻¹) diets containing varying dietary protein levels (260, 310 and 370 g kg⁻¹) on growth and feed utilization of hybrid sunfish, and they found that higher PWG was observed in fish fed a diet containing 370 g kg⁻¹ protein than in fish fed diets containing 260 or 310 g kg⁻¹ protein. In the present study, the FBW and PWG in fish increased with dietary protein level from 300 to 420 g kg⁻¹, whereas further elevation of dietary protein to 460 g kg⁻¹ led to a decline of growth performance. The regression equation indicated that the dietary protein level for maximum PWG was 429 g kg⁻¹ at 30 g kg⁻¹ dietary lipid level, and was 418 g kg⁻¹ at 80 g kg⁻¹ dietary lipid level, respectively. These results indicate that 420 g kg⁻¹ dietary protein could support the best growth of hybrid sunfish juveniles. This protein level is similar to the protein requirement (415.1-423.7 g kg⁻¹) determined for the seed-parent of bluegill sunfish Lepomis macrochirus (Yang, Wang, Han, Yang, Li, & Jiang, 2016). Significantly higher FBW and PWG were found in fish fed at 80 g kg⁻¹ dietary lipid level than in fish fed at 30 g kg⁻¹ dietary lipid level, suggesting that 80 g kg⁻¹ dietary lipid level is more suitable for the fast growth of hybrid sunfish. This lipid level is as same as that (80 g kg⁻¹) determined for juvenile bluegill sunfish *Lepomis*

Aquaculture Nutrition

macrochirus (Hoagland, Davis, Tuan, & Mcgraw, 2003). Therefore, the optimal dietary
protein and lipid contents for fast growth of hybrid sunfish are 420 g kg⁻¹ and 80 g kg⁻¹,
respectively.

In the present study, feed intake of hybrid sunfish declined with the increase of dietary protein and lipid levels. Similar results were found in Asian catfish Pangasius hypophthalmus (Liu, Wang, & Ji, 2011), Pseudobagrus ussuriensis (Wang, Ma, Shi, Liu, Guo, Yang, & Chen, 2012), giant croaker Nibea japonica (Chai, Ji, Han, Dai, & Wang, 2013) and hybrid grouper (Rahimnejad et al., 2015). In the present study, the FCR declined while the NRE and PRE enhanced with dietary protein level increased from 300 to 380 g kg⁻¹, lower FCR but higher NRE and PRE were found in fish fed at 80 g kg⁻¹ dietary lipid level compared to fish fed at 30 g kg⁻¹ dietary lipid level, suggesting that the based on feed utilization efficiency, the optimal dietary protein and lipid levels for hybrid sunfish were respectively 380 g kg⁻¹ and 80 g kg⁻¹. Besides, no statistically differences were found in FCR, NRE and PRE between fish fed dietary protein at 380 and 420 g kg⁻¹. Thereby, the best feed utilization efficiency in hybrid sunfish was not impaired when fed at 420 g kg⁻¹ protein and 80 g kg⁻¹ lipid. According to the above mentioned results, the fast growth of hybrid sunfish is ascribed to high feed utilization rather than high feed intake.

Lipid deposition in fish body is closely associated with dietary lipid level (Yi, Zhang, Xu, Li, Zhang, & Mai, 2014), increasing dietary lipid level generally result in an increment in whole body lipid while the shrinkage in whole body moisture. For instance, previous studies reported that the body lipid content increased with the dietary lipid level rose in various fish species, e.g. grouper *Epinephelus malabaricus* (Lin & Shiau, 2003), cobia *Rachycentron canadum* (Wang, Liu, Tian, Mai, Du, Wang, & Yang, 2005), Atlantic halibut *Hippoglossus hippoglossus* (Martins, Valente, & Lall, 2007),

2 3 4	267	white seabas
5 6	268	2009; Jirsa, I
7 8	269	Platichthys s
9 10 11	270	shortfin corv
12 13	271	Perez-Velazo
14 15	272	g kg ⁻¹ , whole
16 17	273	while no sign
18 19 20	274	dietary lipid
20 21 22	275	sunfish.
23 24	276	Enviror
25 26	2.77	dietary prote
27 28	278	nhosnhorus y
29 30 31	270	no statistical
32 33	277	hotwoon fish
34 35	200	
36 37	281	wastes outpu
38 39	282	Furthermore
40 41	283	wastes of nit
42 43 44	284	These results
44 45 46	285	effectively d
47 48	286	knowledge, t
49 50	287	fish were me
51 52	288	(Chai et al., 2
55 55	289	2013) and la
56 57	290	study, the wa
58 59	291	and lipid we

1

white seabass *Atractoscion nobilis* (López, Durazo, Viana, Drawbridge, & Bureau,
2009; Jirsa, Deng, Davis, Wang, Hung, & Drawbridge, 2013), starry flounder *Platichthys stellatus* (Ding, Zhang, Wang, Ma, Meng, Duan, Sun, & Sun, 2010) and
shortfin corvina *Cynoscion parvipinnis* (González-Félix, Maldonado-Othón, &
Perez-Velazquez, 2016). In the present study, elevating dietary lipid level from 30 to 80
g kg⁻¹, whole body lipid content increased and whole body moisture content declined,
while no significant difference was found in hepatosomatic index, suggesting enhancing
dietary lipid level will increase lipid deposition in body but not in liver of hybrid
sunfish.

nmental impacts should not be ignored when determining the optimal in and lipid levels for fish. In the present study, nitrogen waste and waste decreased with dietary lipid level raised from 300 to 380 g kg⁻¹, and ly difference was detected in both nitrogen waste and phosphorus waste fed at 380 and 420 g kg⁻¹ dietary protein level although the values of it tended to increase with dietary protein level exceeding 380 g kg⁻¹. , compared to fish fed at 30 g kg⁻¹ dietary lipid level, significantly lower trogen and phosphorus were found in fish fed at 80 g kg⁻¹ dietary lipid level. s indicate that feeding at optimal dietary protein and lipid levels could lecline wastes output in juvenile hybrid sunfish farming. To the best of our the effects of different dietary protein and lipid levels on wastes output in erely evaluated in a few fish species including giant croaker *Nibea japonica* 2013), golden pompano Trachinotus ovatus (Wang, Han, Wang, & Ma, rgemouth bass *Micropterus salmoides* (Huang et al., 2017). In the present astes output for hybrid sunfish fed at optimal combination of dietary protein re 42.54 g kg⁻¹ N and 8.26 g kg⁻¹ P, which is lower than that evaluated in

Page 13 of 30

Aquaculture Nutrition

1	
2	
3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32 22	
27 22	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 76	
40	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
5/ 50	
50 50	
60	
50	

292	giant croaker (~50 g kg ⁻¹ N, Chai et al., 2013), golden pompano (64 g kg ⁻¹ N, Wang et
293	al., 2013) and largemouth bass (49.8 g kg ⁻¹ N, 8.7 g kg ⁻¹ P, Huang et al., 2017).
294	According to these results, it seems that hybrid sunfish farming may generate less
295	nitrogen and phosphorus wastes than that produced from the farming of giant croaker,
296	golden pompano and largemouth bass.
297	In conclusion, the FBW, PWG, NRE and PRE of hybrid sunfish increased, while
298	feed intake and FCR decreased, with dietary protein increased from 300 to 420 g kg ⁻¹
299	and dietary lipid increased from 30 to 80 g kg ⁻¹ . Therefore, the optimal combination of
300	dietary protein and lipid for hybrid sunfish should be 420 g kg ⁻¹ and 80 g kg ⁻¹ ,
301	respectively. In fish fed diets containing 380-420 g kg ⁻¹ protein and 80 g kg ⁻¹ lipid, the
302	wastes output of nitrogen and phosphorus were obvious lower than that generated of
303	fish fed diets containing other combination of dietary protein and lipid. Feeding at
304	optimal combination of dietary protein and lipid is an efficient strategy to reduce waste
305	discharge in hybrid sunfish farming.
306	
307	ACKNOWLEDGEMENTS
308	This research is funded by the Public Welfare Project of Science Technology
309	Department of Zhejiang Province (Grant No. LGN19C190007) and the
310	Major Science and Technology Extension Project of Hangzhou Academy of Agricultura
311	l Sciences-Breeding and industrialization development of hybrid sunfish
312	(2016HNKT-01). The authors thank Mr. Kang Yang and Zhao Wei for their helps in
313	preparing the test diets.
314	
315	DATA A VAILABILITY STATEMENT

The data that support the findings of this study are appearing in the submitted article.

2		
3 4	317	
5 6	318	CONFLICT OF INTEREST
7 8	319	The authors have no conflicts of interest with respect to the research, authorship, and/or
9 10 11	320	publication of this article.
12 13	321	
14 15	322	ETHICAL STATEMENT
16 17 18	323	All the fish were treated following the guideline of Administration of Laboratory
19 20	324	Animals published by the State Science and Technology Commission of China.
21 22	325	
23 24 25	326	REFERENCES
25 26 27	327	Alam, S., Watanabe, W.O., Carroll, P.M., & Rezek, T.C. (2009). Effects of dietary
28 29	328	protein and lipid levels on growth performance and body composition of black sea
30 31 22	329	bass Centropristis striata (Linnaeus 1758) during grow-out in a pilot-scale marine
32 33 34	330	recirculating system. Aquaculture Research, 40, 442-449.
35 36	331	AOAC. (1995). Official Methods of Analysis. Association of Official Analytical
37 38	332	Chemists, 16th ed. Arlington, VA., USA.
39 40 41	333	Chai, X.J., Ji, W.X., Han, H., Dai, Y.X., & Wang, Y. (2013). Growth, feed utilization,
42 43	334	body composition and swimming performance of giant croaker, Nibea japonica
44 45	335	Temminck and Schlegel, fed at different dietary protein and lipid levels.
46 47 48	336	Aquaculture Nutrition, 19, 928-935.
49 50	337	Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas,
51 52	338	C.C. (2010). Effect of dietary lipid levels on growth, feed utilization, body
53 54 55	339	composition and serum metabolites of meagre (Argyrosomus regius) juveniles.
56 57	340	Aquaculture, 307, 65-70.
58 59 60	341	Ding, L., Zhang, L., Wang, J., Ma, J., Meng, X., Duan, P., Sun, L., & Sun, Y. (2010).

Page 15 of 30

Aquaculture Nutrition

2		
3 4	342	Effect of dietary lipid level on the growth performance, feed utilization, body
5 6	343	composition and blood chemistry of juvenile starry flounder (Platichthys stellatus).
7 8	344	Aquaculture Research, 41, 1470-1478.
9 10 11	345	Glencross, B., Smith, M., Curnow, J., Smith, D., & Williams, K. (2001). The dietary
12 13	346	protein and lipid requirements of post-puerulus western rock lobster, Panulirus
14 15	347	cygnus. Aquaculture, 199, 119-129.
16 17 18	348	González-Félix, M.L., Maldonado-Othón, C.A., & Perez-Velazquez, M. (2016). Effects
19 20	349	of dietary lipid level and replacement of fish oil by soybean oil in compound feeds
21 22	350	for the shortfin corvina (Cynoscion parvipinnis). Aquaculture, 454, 217-228.
23 24 25	351	Hoagland, R.H., Davis, D.A., Tuan, N.A., & Mcgraw, W.J. (2003). Evaluation of
25 26 27	352	practical bluegill diets with varying protein and energy levels. North American
28 29	353	Journal of Aquaculture, 65, 147-150.
30 31	354	Huang, D., Wu, Y., Lin, Y., Chen, J., Karrow, N.A., Ren, X., & Wang, Y. (2017).
32 33 34	355	Dietary protein and lipid requirements for juvenile largemouth bass, Micropterus
35 36	356	salmoides. Journal of the World Aquaculture Society, 48, 782-790.
37 38	357	Jirsa, D., Deng, D.F., Davis, D.A., Wang, W.F., Hung, S.S.O., & Drawbridge, M.,
39 40 41	358	(2013). The effects of dietary lipid levels on performance and heat-shock protein
42 43	359	response of juvenile white seabass, Atractoscion nobilis. Aquaculture Nutrition, 19,
44 45	360	227-232.
46 47 48	361	Lane, R.L., & Morris, J.E. (2002). Comparison of prepared feed versus natural food
40 49 50	362	ingestion between pond-cultured bluegill and hybrid sunfish. Journal of the World
51 52	363	Aquaculture Society, 33, 517-519.
53 54	364	Li, X.F., Liu, W.B., Jiang, Y.Y., Zhu, H., & Ge, X.P. (2010). Effects of dietary protein
55 56 57	365	and lipid levels in practical diets on growth performance and body composition of
58 59 60	366	blunt snout bream (Megalobrama amblycephala) fingerlings. Aquaculture, 303,

1		
2 3 4	367	65-70.
5 6	368	Lin, Y.H., & Shiau, S.Y. (2003). Dietary lipid requirement of grouper, Epinephelus
/ 8 9	369	malabaricus, and effects on immune responses. Aquaculture, 225, 243-250.
10 11	370	Liu, X.Y., Wang, Y., & Ji, W.X. (2011). Growth, feed utilization and body composition
12 13	371	of Asian catfish (Pangasius hypophthalmus) fed at different dietary protein and
14 15 16	372	lipid levels. Aquaculture Nutrition, 17, 578-584.
17 18	373	López, L.M., Durazo, E., Viana, M.T., Drawbridge, M., & Bureau, D.P. (2009). Effect
19 20	374	of dietary lipid levels on performance, body composition and fatty acid profile of
21 22 23	375	juvenile white seabass, Atractoscion nobilis. Aquaculture, 289, 101-105.
23 24 25	376	Martins, D.A., Valente, L.M., & Lall, S.P. (2007). Effects of dietary lipid level on
26 27	377	growth and lipid utilization by juvenile Atlantic halibut (Hippoglossus
28 29	378	hippoglossus, L.). Aquaculture, 263, 150-158.
30 31 32	379	Rahimnejad, S., Bang, I.C., Park, J.Y., Sade, A., Choi, J., & Lee, S.M. (2015). Effects
33 34	380	of dietary protein and lipid levels on growth performance, feed utilization and body
35 36	381	composition of juvenile hybrid grouper, <i>Epinephelus fuscoguttatus×E. lanceolatus</i> .
37 38 30	382	Aquaculture, 446, 283-289.
40 41	383	Skalli, A., Hidalgo, M.C., Abellán, E., Arizcun, M., & Cardenete, G. (2004). Effects of
42 43	384	the dietary protein/lipid ratio on growth and nutrient utilization in common dentex
44 45	385	(Dentex dentex L.) at different growth stages. Aquaculture, 235, 1-11.
40 47 48	386	Tidwell, J.H., Webster, C.D., & Clark, J.A. (1992). Growth, feed conversion, and
49 50	387	protein utilization of female green sunfish \times male bluegill hybrids fed isocaloric
51 52	388	diets with different protein levels. The progressive fish-culturist, 54, 234-239.
53 54 55	389	Twibell, R.G., Wilson, K.A., Sanders, S., & Brown, P.B. (2003). Evaluation of
56 57	390	experimental and practical diets for bluegill Lepomis macrochirus and hybrid
58 59	391	bluegill L. cyanellus \times L. macrochirus. Journal of the World Aquaculture Society,

1		
2	202	24 497 405
4	392	34, 487-495.
5 6	393	Wang, F., Han, H., Wang, Y., & Ma, X. (2013). Growth, feed utilization and body
/ 8 9	394	composition of juvenile golden pompano Trachinotus ovatus fed at different
10 11	395	dietary protein and lipid levels. Aquaculture Nutrition, 19, 360-367.
12 13	396	Wang, J.T., Liu, Y.J., Tian, L.X., Mai, K.S., Du, Z.Y., Wang, Y., & Yang, H.J. (2005).
14 15 16	397	Effect of dietary lipid level on growth performance, lipid deposition, hepatic
17 18	398	lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, 249, 439-447.
19 20	399	Wang, N., Hayward, R.S., & Noltie, D.B. (2000). Effects of social interaction on
21 22 23	400	growth of juvenile hybrid sunfish held at two densities. North American Journal of
24 25	401	<i>Aquaculture</i> , 62, 161-167.
26 27	402	Wang, Y.Y., Ma, G.J., Shi, Y., Liu, D.S., Guo, J.X., Yang, Y.H., & Chen, C.D. (2012).
28 29 20	403	Effects of dietary protein and lipid levels on growth, feed utilization and body
30 31 32	404	composition in Pseudobagrus ussuriensis fingerlings. Aquaculture Nutrition, 19,
33 34	405	390-398.
35 36	406	Yang, M., Wang, J., Han, T., Yang, Y., Li, X., & Jiang, Y. (2016). Dietary protein
37 38 39	407	requirement of juvenile bluegill sunfish (Lepomis macrochirus). Aquaculture,
40 41	408	191-197.
42 43	409	Yi, X., Zhang, F., Xu, W., Li, J., Zhang, W., & Mai, K.S. (2014). Effects of dietary lipid
44 45 46	410	content on growth, body composition and pigmentation of large yellow croaker
46 47 48 50 51 52 53 54 55 56 57	411	Larimichthys croceus. Aquaculture, 434, 355-361.
58		

IngredientDry matterCrude proteinCrude lipidRed fish meal92665687Poultry by-product meal965657127Soybean meal89444714	
Red fish meal92665687Poultry by-product meal965657127Soybean meal89444714	Ash
Poultry by-product meal965657127Soybean meal89444714	154
Soybean meal 894 447 14	136
	61
Wheat bran 875 177 41	33
Wheat gluten meal92.28054	5
Rapeseed meal 898 401 15	65
Wheat flour 864 139 20	7

Table 1 Proximate composition (g kg⁻¹) of the feed ingredients

2 Crude protein, crude lipid and ash are expressed on a dry matter basis (n = 2).

ee periez

4	least) of the toot dist.									
4	Kg ⁻¹) of the test diets									
	Ingredient	L30 ¹	L34 ¹	L38 ¹	L42 ¹	L46 ¹	H30 ¹	H34 ¹	H38 ¹	H
	Red fish meal	80	130	180	230	280	80	130	180	23
	Soybean meal	220	220	220	220	220	220	220	220	22
	Wheat flour	267	237	195	120	90	267	237	195	12
	Wheat bran	180	180	180	180	180	180	180	180	18
	Poultry by-product meal	50	50	50	50	50	50	50	50	50
	Rapeseed meal	30	30	30	50	60	30	30	30	50
	Wheat gluten meal	10	20	35	50	64	10	20	35	50
	Bentonite powder	96	71	52	47	17	55	29	11	0
	CaHPO ₄	15	15	15	15	15	15	15	15	15
	Choline chloride	2	2	2	2	2	2	2	2	2
	Starch, gel.	2	2	2	2	2	2	2	2	2
	Mineral premix ²	20	20	20	20	20	20	20	20	20
	Menhaden fish oil	28	23	19	14	10	69	65	60	55
	Drv matter ³	926	929	939	937	933	939	934	939	93
	Crude protein ³	298	333	373	409	451	306	337	374	41
	Crude lipid ³	35	31	33	30	34	77	86	78	83
	Ash ³	151	142	132	134	106	118	103	97	92
	Phosphorus ³	10	12	12	13	14	16	11	13	14
	Gross anargy	15 6	16 1	165	167	17 17 0	17.0	177	10 1	10

¹L30: Diet designed with 30 g kg⁻¹ crude lipid and 300 g kg⁻¹ crude protein; L34: Diet
designed with 30 g kg⁻¹ crude lipid and 340 g kg⁻¹ crude protein; L38: Diet designed
with 30 g kg⁻¹ crude lipid and 380 g kg⁻¹ crude protein; L42: Diet designed with 30 g
kg⁻¹ crude lipid and 420 g kg⁻¹ crude protein; L46: Diet designed with 30 g kg⁻¹ crude

Aquaculture Nutrition

9	lipid and 460 g kg ⁻¹ crude protein; H30: Diet designed with 80 g kg ⁻¹ crude lipid and
10	300 g kg ⁻¹ crude protein; H34: Diet designed with 80 g kg ⁻¹ crude lipid and 340 g kg ⁻¹
11	crude protein; H38: Diet designed with 80 g kg ⁻¹ crude lipid and 380 g kg ⁻¹ crude
12	protein; H42: Diet designed with 80 g kg ⁻¹ crude lipid and 420 g kg ⁻¹ crude protein;
13	H46: Diet designed with 80 g kg ⁻¹ crude lipid and 460 g kg ⁻¹ crude protein.
14	² Vitamin and mineral premix provides per kg of feed: retinyl acetate, 3000 IU;
15	cholecalciferol, 2400 IU; all-rac-a-tocopheryl acetate, 60 IU; menadione sodium
16	bisulfite, 1.2 mg; ascorbic acid monophosphate (49% ascorbic acid), 120 mg;
17	cyanocobalamine, 0.024 mg; d-biotin, 0.168 mg; choline chloride, 1200 mg; folic acid,
18	1.2 mg; niacin, 12 mg; d-calcium pantothenate, 26 mg; pyridoxine.HCl, 6 mg;
19	riboflavin, 7.2 mg; thiamin.HCl, 1.2 mg; sodium chloride (39% Na, 61% Cl), 3077 mg;
20	ferrous sulfate (20% Fe), 65mg; manganese sulfate (36% Mn), 89 mg; zinc sulfate (40%
21	Zn), 150 mg; copper sulfate (25% Cu), 28 mg; potassium iodide (24% K, 76% I), 11
22	mg; Celite AW521 (acid-washed diatomaceous earth silica), 1000 mg.
23	³ Crude protein, crude lipid, ash and phosphorus are expressed as they are in air and
24	given as means of two measurements $(n = 2)$.

Aquaculture Nutrition

Table 3 Final body weight (FBW, g), percent weight gain (PWG, %), feed intake (g d⁻¹), feed conversion ratio (FCR), retention efficiencies of

26 nitrogen (NRE, %) and phosphorus (PRE, %), and survival (%) of hybrid sunfish juveniles

Diet	FBW	PWG	Feed intake	FCR	NRE	PRE	Survival
L30	9.68 ± 0.22	645.80 ± 25.38	4.98 ± 0.24	$1.83\pm0.10^{\rm E}$	$29.32 \pm 1.96^{\mathrm{A}}$	$31.64\pm4.43^{\rm B}$	100
L34	10.78 ± 0.25	789.23 ± 11.33	4.37 ± 0.22	$1.53\pm0.07^{\rm D}$	$32.89\pm0.93^{\rm B}$	35.85 ± 1.28^{BC}	95
L38	12.26 ± 0.11	882.56 ± 42.86	3.99 ± 0.10	$1.37\pm0.02^{\rm C}$	$32.68 \pm 1.15^{\mathrm{B}}$	$37.48 \pm 1.86^{\text{C}}$	95
L42	14.42 ± 0.67	1087.86 ± 52.39	3.77 ± 0.09	$1.25\pm0.04^{\rm B}$	33.06 ± 0.93^{BC}	$38.47\pm0.88^{\rm C}$	95
L46	13.32 ± 0.10	967.50 ± 88.28	3.43 ± 0.04	$1.16\pm0.01^{\rm B}$	33.13 ± 0.36^{BC}	$39.73\pm0.69^{\rm C}$	97
H30	11.46 ± 0.28	881.09 ± 52.89	4.51 ± 0.07	$1.55 \pm 0.04^{\rm D}$	33.62 ± 0.93^{BC}	$25.81\pm0.68^{\rm A}$	97
H34	12.72 ± 0.10	943.82 ± 19.30	4.26 ± 0.08	$1.44\pm0.03^{\rm CD}$	33.64 ± 1.02^{BC}	$41.10\pm1.58^{\rm C}$	97
H38	17.60 ± 0.04	1309.77 ± 50.78	3.16 ± 0.06	$1.02\pm0.01^{\rm A}$	$41.31\pm0.09^{\rm E}$	$47.30\pm1.94^{\rm D}$	97
H42	16.93 ± 0.32	1317.51 ± 105.49	3.24 ± 0.06	$1.04\pm0.01^{\rm A}$	$38.45 \pm 1.39^{\text{D}}$	$41.80\pm4.26^{\rm C}$	95
H46	17.22 ± 0.77	1257.38 ± 68.04	3.16 ± 0.02	$1.03\pm0.01^{\rm A}$	$35.81\pm0.67^{\rm C}$	$39.22\pm0.55^{\rm C}$	100
Protein level							
300 g kg ⁻¹	10.55 ± 1.02^{a}	763.45 ± 134.11^{a}	$4.74\pm0.30^{\text{d}}$	$1.69\pm0.17^{\text{d}}$	31.47 ± 2.73^{a}	28.73 ± 4.27^{a}	98
340 g kg ⁻¹	11.75 ± 1.08^{b}	866.52 ± 85.85^{b}	$4.32\pm0.16^{\text{c}}$	$1.49\pm0.07^{\circ}$	$33.26\pm0.96^{\text{b}}$	38.48 ± 3.15^{b}	96
380 g kg ⁻¹	$14.93 \pm 2.92^{\circ}$	$1096.16 \pm 237.74^{\circ}$	3.58 ± 0.46^{b}	1.20 ± 0.19^{b}	$36.99 \pm 4.78^{\text{d}}$	$42.39\pm5.64^{\text{c}}$	96

Protein × lipid	NS	NS	NS	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	
Lipid level	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	
Protein level	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	
Two-way ANOVA							
80 g kg ⁻¹	$15.19\pm2.68^{\rm y}$	$1141.92 \pm 203.87^{\text{y}}$	$3.67\pm0.61^{\rm x}$	1.22 ± 0.24^{x}	$36.56\pm3.16^{\text{y}}$	$39.22\pm0.55^{\mathrm{y}}$	97
30 g kg ⁻¹	12.08 ± 1.80^{x}	874.59 ± 162.07^{x}	4.11 ± 0.57^{y}	$1.43\pm0.25^{\rm y}$	32.22 ± 1.81^{x}	36.63 ± 3.48^{x}	96
Lipid level							
460 g kg ⁻¹	15.27 ± 2.19^{cd}	$1112.44 \pm 173.72^{\circ}$	3.29 ± 0.15^{a}	$1.09\pm0.07^{\text{a}}$	34.47 ± 1.54^{bc}	39.47 ± 0.63^{bc}	98
420 g kg ⁻¹	15.67 ± 1.46^{d}	1202.69 ± 146.19^{d}	3.50 ± 0.30^{b}	1.15 ± 0.12^{ab}	35.75 ± 3.14^{cd}	40.13 ± 3.30^{bc}	95

¹L30: Diet designed with 30 g kg⁻¹ crude lipid and 300 g kg⁻¹ crude protein; L34: Diet designed with 30 g kg⁻¹ crude lipid and 340 g kg⁻¹ crude protein; L38: Diet designed with 30 g kg⁻¹ crude lipid and 380 g kg⁻¹ crude protein; L42: Diet designed with 30 g kg⁻¹ crude lipid and 420 g kg⁻¹ crude protein; L46: Diet designed with 30 g kg⁻¹ crude lipid and 460 g kg⁻¹ crude protein; H30: Diet designed with 80 g kg⁻¹ crude lipid and 300 g kg⁻¹ crude protein; H34: Diet designed with 80 g kg⁻¹ crude lipid and 340 g kg⁻¹ crude protein; H38: Diet designed with 80 g kg⁻¹ crude lipid and 380 g kg⁻¹ crude protein; H42: Diet designed with 80 g kg⁻¹ crude lipid and 420 g kg⁻¹ crude protein; H46: Diet designed with 80 g kg⁻¹ crude lipid and 460 g kg⁻¹ crude protein. ² Data are expressed as mean ± SD (n = 3). Data with different superscripts in the same column are significantly different at P < 0.05. Uppercases

Aquaculture Nutrition

34 (ABCDE) in the same column indicate the statistical results when there was significant interaction between protein level and lipid level (P < P

0.05), and lowercases (abcd and xy) in the same column indicate the statistical results when there was no significant interaction between protein

36 level and lipid level (P > 0.05).

For peer Peview

Aquaculture Nutrition

Diet	Condition factor	Hepatosomatic index	Moisture	Crude protein	Crude lipid	Ash	Phosphorus
L30	$2.70\pm0.16^{\rm AB}$	2.81 ± 0.57	733 ± 4.4	157 ± 2.7	62 ± 3.6	37 ± 0.8	6 ± 0.6
L34	$2.86\pm0.32^{\rm AB}$	2.42 ± 0.40	726 ± 5.8	165 ± 4.2	57 ± 3.4	36 ± 1.6	6± 0.1
L38	$2.65\pm0.14^{\rm A}$	1.97 ± 0.25	728 ± 6.2	165 ± 4.5	58 ± 2.3	35 ± 0.8	6 ± 0.3
L42	$2.80\pm0.29^{\rm AB}$	2.00 ± 0.29	735 ± 0.4	167 ± 0.3	58 ± 2.4	36 ± 0.8	6 ± 0.1
L46	$2.79\pm0.44^{\rm AB}$	1.90 ± 0.45	729 ± 2.8	170 ± 0.1	58 ± 0.8	39 ± 3.5	6 ± 0.0
H30	$2.67\pm0.18^{\rm A}$	2.63 ± 0.28	712 ± 2.0	158 ± 0.5	88 ± 0.1	37 ± 0.4	6 ± 0.0
H34	$2.84\pm0.23^{\rm AB}$	2.18 ± 0.37	714 ± 7.5	161 ± 2.9	81 ± 3.0	37 ± 1.0	7 ± 0.2
138	$2.88\pm0.18^{\rm AB}$	2.67 ± 0.46	717 ± 5.0	157 ± 3.2	81 ± 5.6	36 ± 0.7	6± 0.2
H42	$2.66\pm0.20^{\rm A}$	2.03 ± 0.24	721 ± 6.9	165 ± 10.0	72 ± 0.6	36 ± 1.2	6 ± 0.9
H46	$3.18\pm0.34^{\rm B}$	1.97 ± 0.22	720 ± 5.4	165 ± 1.7	75 ± 4.9	36 ± 0.1	6± 0.0
Protein level							
300 g kg ⁻¹	2.68 ± 0.16	2.72 ± 0.44^{b}	722 ± 12.5	157 ± 1.6^{a}	75±15.1 ^b	37 ± 0.6	6 ± 0.4
340 g kg ⁻¹	2.85 ± 0.27	$2.30\pm0.39^{\text{a}}$	720 ± 8.7	164 ± 3.6^{ab}	69 ± 14.0^{ab}	36 ±1.2	7 ± 0.2
380 g kg ⁻¹	2.76 ± 0.20	$2.32\pm0.51^{\text{a}}$	722 ± 8.0	161 ± 5.7^{ab}	70 ± 14.0^{ab}	36 ± 1.0	6 ± 0.2
420 g kg ⁻¹	2.73 ± 0.24	$2.02\pm0.25^{\text{a}}$	728 ± 9.0	166 ± 5.9^{ab}	65 ± 8.4^{a}	36 ± 0.9	6 ± 0.6
460 g kg ⁻¹	2.98 ± 0.43	1.94 ± 0.34^{a}	725 ± 6.0	167 ± 3.4^{b}	66 ± 10.0^{a}	37 ± 2.8	6 ± 0.2

Lipid level							
30 g kg ⁻¹	$2.76\pm0.28^{\rm x}$	2.22 ± 0.52	$730\pm4.8^{\mathrm{y}}$	165 ± 5.1	59 ± 2.7^{x}	36 ± 2.0	6 ± 0.3
80 g kg ⁻¹	$2.85\pm0.29^{\text{y}}$	2.30 ± 0.43	717 ± 5.6^{x}	161 ± 5.1	$80\pm 6.3^{\mathrm{y}}$	36 ± 0.8	6 ± 0.4
Two-way ANG	OVA						
Protein level	NS	<i>P</i> < 0.05	NS	<i>P</i> < 0.05	<i>P</i> < 0.05	NS	NS
Lipid level	<i>P</i> < 0.05	NS	<i>P</i> < 0.05	NS	<i>P</i> < 0.05	NS	NS
D	D . 0.05		NIG			2.10	2.10
¹ L30: Diet des protein; L38: I crude protein;	P < 0.05 igned with 30 g kg ⁻ Diet designed with 3 L46: Diet designed	NS ¹ crude lipid and 300 g 60 g kg ⁻¹ crude lipid and with 30 g kg ⁻¹ crude lip	NS kg ⁻¹ crude protein; L l 380 g kg ⁻¹ crude pro bid and 460 g kg ⁻¹ cru	NS 34: Diet designed tein; L42: Diet de de protein; H30: I	NS with 30 g kg ⁻¹ cru signed with 30 g 2 Diet designed with	NS ude lipid and 34 kg ⁻¹ crude lipid h 80 g kg ⁻¹ crud	NS 0 g kg ⁻¹ crud and 420 g k e lipid and 3
¹ L30: Diet des protein; L38: I crude protein; kg ⁻¹ crude prot	P < 0.05 igned with 30 g kg ⁻ Diet designed with 3 L46: Diet designed ein; H34: Diet desig	NS ¹ crude lipid and 300 g 0 g kg ⁻¹ crude lipid and with 30 g kg ⁻¹ crude lip gned with 80 g kg ⁻¹ crude	NS kg ⁻¹ crude protein; L l 380 g kg ⁻¹ crude pro bid and 460 g kg ⁻¹ cru de lipid and 340 g kg	NS 34: Diet designed tein; L42: Diet de de protein; H30: I ⁻¹ crude protein; H	NS with 30 g kg ⁻¹ cru signed with 30 g 2 Diet designed with 38: Diet designed	NS ude lipid and 34 kg ⁻¹ crude lipid h 80 g kg ⁻¹ crud d with 80 g kg ⁻¹	NS 0 g kg ⁻¹ cruc and 420 g k e lipid and 3 crude lipid a
¹ L30: Diet des protein; L38: I crude protein; kg ⁻¹ crude prot 380 g kg ⁻¹ crud	<i>P</i> < 0.05 igned with 30 g kg ⁻ Diet designed with 3 L46: Diet designed ein; H34: Diet desig le protein; H42: Die	NS ¹ crude lipid and 300 g 30 g kg ⁻¹ crude lipid and with 30 g kg ⁻¹ crude lip gned with 80 g kg ⁻¹ crude et designed with 80 g kg	NS kg ⁻¹ crude protein; L l 380 g kg ⁻¹ crude pro bid and 460 g kg ⁻¹ cru de lipid and 340 g kg g ⁻¹ crude lipid and 420	NS 34: Diet designed tein; L42: Diet de de protein; H30: I ¹ crude protein; H 0 g kg ⁻¹ crude prot	NS with 30 g kg ⁻¹ cru signed with 30 g f Diet designed with 38: Diet designed	NS ade lipid and 34 kg ⁻¹ crude lipid h 80 g kg ⁻¹ crud d with 80 g kg ⁻¹ esigned with 80	NS 0 g kg ⁻¹ crud and 420 g k e lipid and 3 crude lipid a g kg ⁻¹ crude
¹ L30: Diet des protein; L38: I crude protein; kg ⁻¹ crude prot 380 g kg ⁻¹ crud lipid and 460 g	P < 0.05 igned with 30 g kg ⁻ Diet designed with 3 L46: Diet designed ein; H34: Diet desig le protein; H42: Die g kg ⁻¹ crude protein.	NS ¹ crude lipid and 300 g 30 g kg ⁻¹ crude lipid and with 30 g kg ⁻¹ crude lip gned with 80 g kg ⁻¹ crude et designed with 80 g kg	kg ⁻¹ crude protein; L l 380 g kg ⁻¹ crude pro bid and 460 g kg ⁻¹ cru de lipid and 340 g kg ⁻¹ g ⁻¹ crude lipid and 420	NS 34: Diet designed tein; L42: Diet de de protein; H30: I ¹ crude protein; H 0 g kg ⁻¹ crude prot	NS with 30 g kg ⁻¹ cru signed with 30 g f Diet designed with 38: Diet designed ein; H46: Diet de	NS ude lipid and 34 kg ⁻¹ crude lipid h 80 g kg ⁻¹ crud d with 80 g kg ⁻¹ esigned with 80	NS 0 g kg ⁻¹ crud and 420 g k e lipid and 3 crude lipid a g kg ⁻¹ crude
¹ L30: Diet des protein; L38: I crude protein; kg ⁻¹ crude prot 380 g kg ⁻¹ crud lipid and 460 g	P < 0.05 igned with 30 g kg ⁻ Diet designed with 3 L46: Diet designed ein; H34: Diet designed le protein; H42: Diet g kg ⁻¹ crude protein. essed as mean ± SD	NS ¹ crude lipid and 300 g 30 g kg^{-1} crude lipid and with 30 g kg ⁻¹ crude lip gned with 80 g kg ⁻¹ crude et designed with 80 g kg 0 (n = 3). Data with diff	kg ⁻¹ crude protein; L l 380 g kg ⁻¹ crude pro bid and 460 g kg ⁻¹ cru de lipid and 340 g kg g ⁻¹ crude lipid and 420 ferent superscripts in	NS 34: Diet designed tein; L42: Diet de de protein; H30: I ¹ crude protein; H 0 g kg ⁻¹ crude prot	NS with 30 g kg ⁻¹ cru signed with 30 g f Diet designed with 38: Diet designed rein; H46: Diet de are significantly c	NS ude lipid and 34 kg ⁻¹ crude lipid h 80 g kg ⁻¹ crud d with 80 g kg ⁻¹ esigned with 80 lifferent at $P < 0$	NS 0 g kg ⁻¹ crud and 420 g k e lipid and 3 crude lipid a g kg ⁻¹ crude

46 and lowercases (ab and xy) in the same column indicate the statistical results when there was no significant interaction between protein level and

47 lipid level (P > 0.05).

For peer Review

9	gain) ⁻¹] of hybrid sunfisl	n juveniles	
	Diet	Nitrogen waste	Phosphorus waste
	L30	61.68 ± 4.95	12.76 ± 1.49
	L34	54.97 ± 3.40	11.43 ± 0.78
	L38	55.16 ± 1.79	10.55 ± 0.47
	L42	54.79 ± 2.43	10.23 ± 0.46
	L46	55.91 ± 0.96	9.70 ± 0.22
	H30	50.36 ± 2.00	18.05 ± 0.63
	H34	51.73 ± 1.76	9.53 ± 0.43
	H38	35.86 ± 0.42	6.95 ± 0.35
	H42	42.54 ± 0.62	8.26 ± 0.53
	H46	47.72 ± 1.04	9.23 ± 0.19
	Protein level		
	300 g kg ⁻¹	56.02 ± 7.06^{d}	$15.40 \pm 3.07^{\circ}$
	340 g kg ⁻¹	53.35 ± 3.00^{cd}	10.48 ± 1.18^{b}
	380 g kg ⁻¹	45.51 ± 10.63 ^a	8.75 ± 2.01^{a}
	420 g kg ⁻¹	48.66 ± 6.90^{ab}	9.25 ± 1.16^{a}
	460 g kg ⁻¹	51.81 ± 4.57^{bc}	9.47 ± 0.32^{a}
	Lipid level		
	30 g kg ⁻¹	$56.50 \pm 3.73^{\text{y}}$	$10.93 \pm 1.31^{\text{y}}$
	80 g kg ⁻¹	45.64 ± 6.12^{x}	$10.40\pm4.08^{\mathrm{x}}$
	Two-way ANOVA		
	Protein level	<i>P</i> < 0.05	<i>P</i> < 0.05
	Lipid level	<i>P</i> < 0.05	<i>P</i> < 0.05
	Protein × linid	NS	NS

¹L30: Diet designed with 30 g kg⁻¹ crude lipid and 300 g kg⁻¹ crude protein; L34: Diet designed with 30 g kg⁻¹ crude lipid and 340 g kg⁻¹ crude protein; L38: Diet designed

52	with 30 g kg ⁻¹ crude lipid and 380 g kg ⁻¹ crude protein; L42: Diet designed with 30 g
53	kg ⁻¹ crude lipid and 420 g kg ⁻¹ crude protein; L46: Diet designed with 30 g kg ⁻¹ crude
54	lipid and 460 g kg ⁻¹ crude protein; H30: Diet designed with 80 g kg ⁻¹ crude lipid and
55	300 g kg ⁻¹ crude protein; H34: Diet designed with 80 g kg ⁻¹ crude lipid and 340 g kg ⁻¹
56	crude protein; H38: Diet designed with 80 g kg ⁻¹ crude lipid and 380 g kg ⁻¹ crude
57	protein; H42: Diet designed with 80 g kg ⁻¹ crude lipid and 420 g kg ⁻¹ crude protein;
58	H46: Diet designed with 80 g kg ⁻¹ crude lipid and 460 g kg ⁻¹ crude protein.
59	² Data are expressed as mean \pm SD (n = 3). Data with different superscripts in the same
60	column are significantly different at $P < 0.05$. Lowercases (abcd and xy) in the same
61	column indicate the statistical results when there was no significant interaction between
62	protein level and lipid level ($P > 0.05$).

 \times

1 Figure Legend

3	Figure 1 The relationship between percent weight gain (PWG) and dietary crude
4	protein level (PL) of hybrid sunfish fed at dietary lipid level 3% (a) and 8% (b). The
5	regression equation in figure (a) was described as $PWG = -2.2425 \times (PL)^2 + 192.36$
6	PL - 3115.3 ($P < 0.05$, $r^2 = 0.8272$), and the regression equation in figure (b) was
7	described as PWG = $-3.765 \times (PL)^2 + 315.64 \times PL - 5302.4$ (<i>P</i> < 0.05, r ² = 0.8141).
8	

(a)

1600 г

